1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
| struct Point{ double x,y; Point(double x=0, double y=0):x(x),y(y) {} void input() { scanf("%lf%lf",&x,&y); } }; typedef Point Vector; struct Circle{ Point c; double r; Circle(){} Circle(Point c,double r):c(c),r(r) {} Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); } void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); } }; struct Line{ Point p; Vector v; double ang; Line(){} Line(Point p, Vector v):p(p),v(v) { ang = atan2(v.y,v.x); } Point point(double t) { return Point(p.x + t*v.x, p.y + t*v.y); } bool operator < (const Line &L)const { return ang < L.ang; } }; int dcmp(double x) { if(x < -eps) return -1; if(x > eps) return 1; return 0; } template <class T> T sqr(T x) { return x * x;} Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; } bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } Vector VectorUnit(Vector x){ return x / Length(x);} Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);} double angle(Vector v) { return atan2(v.y, v.x); }
bool OnSegment(Point P, Point A, Point B) { //端点也算 return dcmp(Cross(A-P,B-P)) == 0 && dcmp(Dot(A-P,B-P)) <= 0; } double DistanceToSeg(Point P, Point A, Point B) { if(A == B) return Length(P-A); Vector v1 = B-A, v2 = P-A, v3 = P-B; if(dcmp(Dot(v1, v2)) < 0) return Length(v2); if(dcmp(Dot(v1, v3)) > 0) return Length(v3); return fabs(Cross(v1, v2)) / Length(v1); } double DistanceToLine(Point P, Point A, Point B) { Vector v1 = B-A, v2 = P-A; return fabs(Cross(v1,v2)) / Length(v1); } Point GetLineIntersection(Line A, Line B) { Vector u = A.p - B.p; double t = Cross(B.v, u) / Cross(A.v, B.v); return A.p + A.v*t; } double DisP(Point A,Point B) { return Length(B-A); } bool SegmentIntersection(Point A,Point B,Point C,Point D) { return max(A.x,B.x) >= min(C.x,D.x) && max(C.x,D.x) >= min(A.x,B.x) && max(A.y,B.y) >= min(C.y,D.y) && max(C.y,D.y) >= min(A.y,B.y) && dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= 0 && dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) <= 0; } bool LineSegmentIntersection(Point A,Point B,Point C,Point D) { return dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= 0; } void SegIntersectionPoint(Point& P,Point a,Point b,Point c,Point d) { //需保证ab,cd相交 P.x = (Cross(d-a,b-a)*c.x - Cross(c-a,b-a)*d.x)/(Cross(d-a,b-a)-Cross(c-a,b-a)); P.y = (Cross(d-a,b-a)*c.y - Cross(c-a,b-a)*d.y)/(Cross(d-a,b-a)-Cross(c-a,b-a)); } Vector Rotate(Point P,Vector A,double rad){ //以P为基准点把向量A旋转rad return Vector(P.x+A.x*cos(rad)-A.y*sin(rad),P.y+A.x*sin(rad)+A.y*cos(rad)); } //点是否在多边形内部(环顾法) int CheckPointInPolygon(Point A,Point* p,int n){ double TotalAngle = 0.0; for(int i=0;i<n;i++) { if(dcmp(Cross(p[i]-A,p[(i+1)%n]-A)) >= 0) TotalAngle += Angle(p[i]-A,p[(i+1)%n]-A); else TotalAngle -= Angle(p[i]-A,p[(i+1)%n]-A); } if(dcmp(TotalAngle) == 0) return 0; //外部 else if(dcmp(fabs(TotalAngle)-2*pi) == 0) return 1; //完全内部 else if(dcmp(fabs(TotalAngle)-pi) == 0) return 2; //边界上 else return 3; //多边形顶点 } //射线法 int Ray_PointInPolygon(Point A,Point* p,int n) { int wn = 0; for(int i=0;i<n;i++) { //if(OnSegment(A,p[i],p[(i+1)%n])) return -1; //边界 int k = dcmp(Cross(p[(i+1)%n]-p[i], A-p[i])); int d1 = dcmp(p[i].y-A.y); int d2 = dcmp(p[(i+1)%n].y-A.y); if(k > 0 && d1 <= 0 && d2 > 0) wn++; if(k < 0 && d2 <= 0 && d1 > 0) wn--; } if(wn) return 1; //内部 return 0; //外部 } //判断未知时针方向的多边形是否是凸包 bool CheckConvexHull(Point* p,int n){ int dir = 0; //旋转方向 for(int i=0;i<n;i++) { int nowdir = dcmp(Cross(p[(i+1)%n]-p[i],p[(i+2)%n]-p[i])); if(!dir) dir = nowdir; if(dir*nowdir < 0) return false; //非凸包 } return true; } //////凸包 int ConvexHull(Point* p, int n, Point* ch) { sort(p,p+n); int m = 0; for(int i=0;i<n;i++) { while(m > 1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } int k = m; for(int i=n-2;i>=0;i--) { while(m > k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } double CalcConvexArea(Point* p,int n) { //凸包面积 double area = 0.0; for(int i=1;i<n-1;i++) area += Cross(p[i]-p[0],p[i+1]-p[0]); return fabs(area*0.5); } double CalcConvexLength(Point* p,int n) { double Len = 0.0; for(int i=0;i<n;i++) Len += Length(p[(i+1)%n]-p[i]); return Len; } //////////旋转卡壳求凸包最远两点 double RotatingCalipers(Point* ch,int n) { //旋转卡壳 int p,q = 1; double ans = 0.0; ch[n] = ch[0]; for(p=0;p<n;p++) { while(dcmp(Cross(ch[p+1]-ch[p],ch[q+1]-ch[p])-Cross(ch[p+1]-ch[p],ch[q]-ch[p])) > 0) q = (q+1)%n; ans = max(ans,max(DisP(ch[p],ch[q]),DisP(ch[p+1],ch[q+1]))); } return ans*ans; } double MinDisOfTwoConvexHull(Point P[],int n,Point Q[],int m) { //旋转卡壳求两个顺时针凸包的最近距离 int Pymin = 0, Qymax = 0, i,j; for(i=0;i<n;i++) if(dcmp(P[i].y-P[Pymin].y) < 0) Pymin = i; for(i=0;i<m;i++) if(dcmp(Q[i].y-Q[Qymax].y) > 0) Qymax = i; P[n] = P[0], Q[m] = Q[0]; double Mindis = Mod, Tmp; for(i=0;i<n;i++) { while(dcmp(Tmp = Cross(P[Pymin+1]-P[Pymin],Q[Qymax+1]-P[Pymin])-Cross(P[Pymin+1]-P[Pymin],Q[Qymax]-P[Pymin])) > 0) Qymax = (Qymax+1)%m; if(dcmp(Tmp) < 0) Mindis = min(Mindis,DistanceToSeg(Q[Qymax],P[Pymin],P[Pymin+1])); else Mindis = min(Mindis,SegDistancetoSeg(P[Pymin],P[Pymin+1],Q[Qymax],Q[Qymax+1])); Pymin = (Pymin+1)%n; } return Mindis; } bool OnLeft(Line L, Point p) { return dcmp(Cross(L.v,p-L.p)) > 0; } Point* p; bool CmpPolarPoint(Point a,Point b) { //点极角排序 int d = dcmp(Cross(a-p[0],b-p[0])); if(!d) return DisP(p[0],a) < DisP(p[0],b); return d > 0; } bool CmpPolarLine(Line a,Line b) { //直线极角排序 return angle(a.v) < angle(b.v); } void GetL(bool counter,Point* p,int n,Line* L) { //多边形的边转为直线 if(counter) { for(int i=n-1;i>=0;i--) L[n-i-1] = Line(p[(i+1)%n],p[i]-p[(i+1)%n]); } else { for(int i=0;i<n;i++) L[i] = Line(p[i],p[(i+1)%n]-p[i]); } } int HalfPlaneIntersection(Line* L, int n, Point* poly) { //半平面交点存入poly sort(L,L+n,CmpPolarLine); int first,last; Point *p = new Point[n]; Line *q = new Line[n]; q[first=last=0] = L[0]; for(int i=1;i<n;i++) { while(first < last && !OnLeft(L[i],p[last-1])) last--; while(first < last && !OnLeft(L[i],p[first])) first++; q[++last] = L[i]; if(dcmp(Cross(q[last].v, q[last-1].v)) == 0) { last--; if(OnLeft(q[last], L[i].p)) q[last] = L[i]; } if(first < last) p[last-1] = GetLineIntersection(q[last-1],q[last]); } while(first < last && !OnLeft(q[first],p[last-1])) last--; if(last-first <= 1) return 0; //点或线或无界平面,返回0 p[last] = GetLineIntersection(q[last],q[first]); int m = 0; for(int i=first;i<=last;i++) poly[m++] = p[i]; delete p; delete q; return m; } int LineCrossPolygon(Point& L1,Point& L2,Point* p,int n,Point* poly) { //直线(L1,L2)切割多边形p,形成新的多边形poly int m = 0; for(int i=0,j;i<n;i++) { if(dcmp(Cross(L1-p[i],L2-p[i])) >= 0) { poly[m++] = p[i]; continue; } j = (i-1+n)%n; if(dcmp(Cross(L1-p[j],L2-p[j])) > 0) poly[m++] = GetLineIntersection(Line(L1,L2-L1),Line(p[j],p[i]-p[j])); j = (i+1+n)%n; if(dcmp(Cross(L1-p[j],L2-p[j])) > 0) poly[m++] = GetLineIntersection(Line(L1,L2-L1),Line(p[j],p[i]-p[j])); } return m; } //////圆 bool InCircle(Point x, Circle c) { return dcmp(c.r - Length(c.c-x)) > 0; } //not in border int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol) //return 交点个数 { double d = Length(C1.c - C2.c); if(dcmp(d) == 0){ if(dcmp(C1.r - C2.r) == 0) return -1; //两圆重合 return 0; } if(dcmp(C1.r + C2.r - d) < 0) return 0; if(dcmp(fabs(C1.r - C2.r) - d) > 0) return 0;
double a = angle(C2.c - C1.c); //向量C1C2的极角 double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2*C1.r*d)); //C1C2到C1P1的极角
Point p1 = C1.point(a-da), p2 = C1.point(a+da); sol.push_back(p1); if(p1 == p2) return 1; sol.push_back(p2); return 2; } int GetSegCircleIntersection(Line L, Circle C, Point* sol) { Vector Noml = Normal(L.v); Line PL = Line(C.c, Noml); Point IP = GetLineIntersection(PL, L); //弦的中点 double Dis = Length(IP - C.c); if(dcmp(Dis-C.r) > 0) return 0; //在圆外 Vector HalfChord = VectorUnit(L.v)*sqrt(sqr(C.r)-sqr(Dis)); int ind = 0; sol[ind] = IP + HalfChord; if(OnSegment(sol[ind],L.p,L.point(1))) ind++; sol[ind] = IP - HalfChord; if(OnSegment(sol[ind],L.p,L.point(1))) ind++; return ind; }
Point Zero = Point(0,0); double TriAngleCircleInsection(Circle C, Point A, Point B) { Vector OA = A-C.c, OB = B-C.c; Vector BA = A-B, BC = C.c-B; Vector AB = B-A, AC = C.c-A; double DOA = Length(OA), DOB = Length(OB),DAB = Length(AB), r = C.r; if(dcmp(Cross(OA,OB)) == 0) return 0; if(dcmp(DOA-C.r) < 0 && dcmp(DOB-C.r) < 0) return Cross(OA,OB)*0.5; else if(DOB < r && DOA >= r) { double x = (Dot(BA,BC) + sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB; double TS = Cross(OA,OB)*0.5; return asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB; } else if(DOB >= r && DOA < r) { double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB; double TS = Cross(OA,OB)*0.5; return asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB; } else if(fabs(Cross(OA,OB)) >= r*DAB || Dot(AB,AC) <= 0 || Dot(BA,BC) <= 0) { if(Dot(OA,OB) < 0) { if(Cross(OA,OB) < 0) return (-acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5; else return ( acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5; } else return asin(Cross(OA,OB)/DOA/DOB)*r*r*0.5; } else { double x = (Dot(BA,BC)+sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB; double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB; double TS = Cross(OA,OB)*0.5; return (asin(TS*(1-x/DAB)*2/r/DOA)+asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1); } }
|